造船主体工种体力劳动强度分级的调查研究

中华造船厂卫生处职业病防治科(200090)

庄惠民 吕成园 陆爱珍 李 洁 陈 安

为了摸清造船工业系统劳动强度和劳动 组织形式,建立和健全合理的劳动保护措施和劳动 作业 制度,进一步深入开展造船工效学研究,并为造船工业推行岗位技能工资制提供科学依据,对本厂造船主体工种进行了劳动强度分级调查。

1 调查方法

1.1 调查对象 选自造船生产的18个主体工种(船体制造装配工、焊工、起重吊装工、船舶管系工、钳工等)32个岗位,共188人,均为男性。受试者要求身体健康,操作标准化。年龄19~57岁,平均33.13±8.87岁,工龄1~38年,平均12.47±9.18年; 身

高155~189.5cm, 平均170.61±5.86cm, 体重46~82kg,平均63.07±8.08kg, 体表面积1.45~1.94 m^2 , 平均1.69±0.12 m^2 。每个工种受试人不少于6人,连续跟踪测试3天。每种操作不少于6个采气样,采用 Y_{A} -【型肺通气量仪测定。

1.2 调查指标 按《体力劳动强度分级》(GB 3869 —83)所确定的测定方法,在测定过程中确定劳动 时间率、平均能量代谢率、劳动强度指数、劳动强度分级。

2 结果与分析

2.1 各岗位工种劳动强度分级测定 见表 1。

表 1

各工种体力劳动强度级别分布

工种	级别	岗位數	劳动时间率 (%)	能量代谢率(kcal/min, m²)	劳动强度指数
船舶钳工	ī	3	80.44 ± .34	2.96 ± 0.34	23, 49 ± 1, 83
船体装配工	II I	1 3	81, 94 75, 35 ± 7, 97	2.68 2.24 ± 0.15	21.05 17.69 ± 1.35
船舶首系工	I I	2 1	85.14 ± 5.06 77.80	2. 85 ± 0 . 34 2. 42	22, 47 ± 2, 42 19, 29
船舶批错工	I	1	84.71	2. 82	22.27
船舶泥工	ĭ	1	95.8	2.79	22.20
船体风割工	I I	1 1	74.17 76.26	2.34 1.50	18.6% 12.80
船体火工	I	1	77, 71	1, 92	15.77
船体电焊工	I	4	76.64 ± 1.75	2. 14 ± 0. 14	17. 30 ± 1. 03
船体配套工	I	1	70.87	2.04	16.37
船体起重工	N N	1 2		3.11 3.50 ± 0.36	23, 84 26, 81 ± 2, 46
船舶钣金工	I	1	83.68	1. 97	16, 26
船舶涂装工	I	2	89.36 ± 1.99	2.91 ± 0.06	23.06 ± 0.34
铅体放样工	I	1	81.39	1.66	14, 04
船舶电工	I	1	78. 2 6	3, 23	24.97
铅舶蓬帆工	IV	1	95, 55	3, 56	27.74
铅体冷加工	1	1	72. 85	2, 69	20.99
铅舶木塑工	I	1	93, 85	3. 17	24, 99
船体密性试验工	I	1	68. r 2	2. 43	19.02

2.2 劳动时间率

劳动时间率是劳动强度大小的影响因素之 , 是 评价劳动组织形式和作业制度及劳动定员的较理想的 、指标。本文把整个调查工种的劳动时间率分成 1 个组

段,见表 2。劳动时间率大多分布在70~90%之间, 且大多分布在80%组段上,平均劳动时间为386.89分钟(相当于6.45小时),不超过我国 8 小时工作劳动时间为400分钟的卫生限度。

表 2	各工种	各工种劳动时间率分布				
劳动时间率 (%) ~70	~80	~90	>90 合计		
工种数	2	14	11	5 32		
构成比(9	6 , 25	43.75	34, 38	15,63 100		

2.3 平均能量代谢率

表 3

平均能量代谢率是反映劳动强度大小的 重 要 指

大小的 重 要 指 各工种平均能量代谢率分布

的卫生限度。

平均能量代谢率(kcal/min·m²)	~1.9	~2.4	~2.9	~3.3	>3.3	合计
工种数	2	10	9	9	2	32
构成比 (%)	6, 25	31, 25	28, 13	28, 13	6, 25	100

2.4 劳动强度分级结果

本文调查的18个工种,32个岗位的主体工种体力劳动强度,I级劳动强度工种只占调查工种的6.25%, I级占 40.63%,I级占43.75%。IV级 占 9.38%。 I级劳动强度的平均劳动时间率为78.84%,能量代谢率为1.58kcal/min·m²,I级劳动强度平均劳动时间率为77.52%,能量代谢率为2.1986kcal/min·m²,

■级劳动强度的平均劳动时间率为83.22%,能量代谢率为2.9306kcal/min·m³, Ⅳ级劳动强度的平均劳动时间率为82.93%,能量代谢率为3.5215kcal/min·m³ 其中船体内场风割工劳动强度较低,而船舶起重(脚手架工)体力劳动强度最高。

标,将其划分出5个组段,分析见表3。其平均能量 代谢率大多数分布在2.4~3.3kcal/min·m³之间,其 中2.4kcal/min·m³组段分布最多,占34.38%,均 值为2.61kcal/min·m³,即平均工作日耗能值为 1252.9310kcal,其中有21.88%的工种超过1500kcal

2.5 造船主体工种体力劳动强度分级与国家产业 系统调查结果的比较 见表 4。

表 4

不同产业系统体力劳动强度分级比较

级别	船厂主体工种			冶金工业			国家产业系统		
	工种构成 (%)		平均能量代谢率 (kcal/min·m²)	工种构成 (%)		K 平均能量代谢率 (kcal/min·m²)		劳动时间率 (%)	平均能量代谢率 (kcal/min·m²)
_ I	6, 25	78.84 ± 3.6	1 1.58±0.11	39.55	68. 14 ± 9. 2	3 1.34±0.16	68, 30	61. 0	1, 13
I	40, 63	77, 52 ± 5, 9	7 2.18 ± 0.18	29.10	72, 64 ± 7, 7	3 2.18 ± 0.11	24.80	66.8	1.76
I	43.75	83. 22 ± 7, 8	2 2.93 ± 0,22	20, 15	65.29 ± 18	09 2.86 ± 0.10	6, 00	73.0	2.32
N	9. 38	82.93 ± 11.	09 3,52±0,26	11.19	76.57 ± 5.89	9 3.79 ± 0.41	0.70	77. 0	3,59

从表 4 中可见,造船主体工种体力劳动强度 I 级、 I 级工种所占的比例均比文献报告要高得多,而 IV 级工种所占比例高于国家产业系统,与冶金行业的行业调查结果基本接近。

3 結论

3.1 造船主体工种的体力劳动强度属于重强度劳动, 其中造船起重、挂钩、脚手架工种更为突出。这部分 工种的体力负荷过重,超过了卫生限度,应予以逐步 改善。

3.2 要重视改善与劳动强度相关的劳动环境问题。造船是一个技术密集型行业,工作复杂,立体交叉多变,环境差,粉尘革物危害严重,温度、噪声高,苦、脏、

累工种多,而机械化程度相对较低。如船体焊工虽属中等劳动强度,但因工作精神高度紧张,且又受舱室粉尘和毒物双重因素的影响,以及因弯腰、曲臂等静态体位,造成的全身骨骼肌疲劳,更有甚于重体力劳动。因此要通过劳动组织制度的改善,结合船舶生产实际情况,加强劳动卫生环境治理,提高机械化劳动效率来调节劳动负荷的大小,使之趋于合理。

(本文在调研过程中承蒙上海市杨浦区中心医院职业精 科倪为民主任医师、中国船舶工业总公司劳动保护研究室举 兆明主任医师、安环处洪之明主管医师审阅、指导,参加本 课题调查的还有黄理中、裴洪祥、程捷及劳资处定额科全体 同志,在此一并表示感谢。)