脉冲振荡技术用于矽肺患者肺功能评价的临床应用价值

王洁¹,杨文兰²

(1. 上海市化工职业病防治院健康监护中心,上海 200041; 2. 同济大学附属上海市肺科医院肺功能室,上海 200433)

摘要:目的 探讨脉冲振荡技术 (IOS) 用于矽肺患者肺功能评价的临床应用价值。方法 对 63 例矽肺患者和 20 例健康者依次进行 IOS 及 PFT 检测,分析两种肺功能各项指标之间的差异、相关性。结果 (1) 随着矽肺期别上升,FVC、FEV₁、FEV₁/FVC 呈下降趋势,叁期矽肺较其他各组均存在显著差异(P < 0.05)。(2) 矽肺组与健康对照组比较,IOS 参数 Z5、R5-R20、X5、Fres、AX 明显升高,差异有统计学意义(P < 0.05); 壹期、贰期矽肺组与健康对照组比较,差异有统计学意义(P < 0.05); 叁期矽肺与其他各组比较均存在显著差异(P < 0.05)。(3) 按通气功能阻塞程度将矽肺组分为无阻塞和轻度、中度、重度阻塞 4 组,与对照组比较发现,随阻塞程度上升,各 IOS 参数结果亦呈上升趋势,且各参数组间比较差异均有统计学意义(P < 0.05)。(4) 除 R20 外,其他各 IOS 参数均与 FEV₁、FEV₁/FVC 显著相关(P < 0.01),其中 X5 为正相关,其他为负相关。比较相关性大小,FEV₁/FVC 与 IOS 相关性更高。结论 (1) IOS 参数如 Z5、R5-R20、X5、Fres、AX 对发现早期(壹期)矽肺肺功能异常有一定临床价值;(2) IOS 和肺通气功能具有良好的相关性,其敏感性似优于 PFT,可作为矽肺患者肺功能评价的补充。

关键词: 矽肺; 常规肺功能 (PFT); 脉冲振荡肺功能 (IOS)

中图分类号: R135.2 文献标识码: A 文章编号: 1002-221X(2014)06-0414-04 DOI: 10.13631/j. cnki. zggyyx. 2014. 06. 004

Application of impulse oscillometry in the measurement of silicosis

WANG Jie*, YANG Wen-lan

(* . Health Care Center of Shanghai Institute of Occupational Disease for Chemical Industry , Shanghai 200041 , China)

Abstract: Objective To investigate the application value of impulse oscillometry system (IOS) in pulmonary function assessment of silicosis patients. Methods Sixty-three patients with silicosis and twenty healthy controls were selected for IOS and pulmonary function test (PFT) examination respectively , analysing their difference and correlation. Results It was showed that: (1) The PFT parameters such as FVC, FEV, and FEV, FVC were showed decreased with the rise of silicosis stage, there was no significant differences among control group, first-stage silicosis and second-stage silicosis (P > 0.05), but the significant differences could be observed between third-stage silicosis and other groups (P < 0.05). (2) There were significant differences in IOS parameters including Z5 \times R5-R20 \times X5 \times Fres and AX between first-stage silicosis and controls (P < 0.05); the comparisons also showed statistics significance among control group and stage I group or stage II group (P < 0.05); IOS parameters in stage III silicosis increased too as comparing with other groups. (3) According to the pulmonary ventilation function, the silicosis patients could be divided into: normal, mild, moderate and severe groups, the IOS test showed that with the obstruction degree progression, the IOS parameters were also rised, and the differences among groups were significant (P < 0.05). (4) All the IOS parameters except R20 and X5 were negatively correlated with FEV, FEV, FVC, X5 was positively correlated with them (P < 0.05); correlation coefficient between FEV₁/FVC and IOS was more high. Conclusion The results suggested that: (1) IOS including Z5 x R5-R20 x X5 x Fres and AX has a certain clinical value in early finding abnormal pulmonary function in mild silicosis, which is better than that of PFT; (2) IOS was well correlated with spirometric parameters, even much better than PFT in detecting airway resistance abnormality, that means it may play a supplementary role in pulmonary function assessment of silicosis patients.

Key words: silicosis; pulmonary function test (PFT); impulse oscillometry system (IOS)

目前矽肺的诊断主要依据影像学方法,而对于其 致残程度评价则主要依据肺功能检查(pulmonary function test, PFT)。矽肺早期,肺通气功能如 FEV_1 、 FVC、 FEV_1 /FVC 等因代偿功能往往无明显改变,而 此时肺组织、气道等结构可能已出现损害。脉冲振荡技术(impulse oscillometry system, IOS)是一种新的肺功能检测手段,已在慢性阻塞性肺部疾病(COPD)、支气管哮喘等疾病诊断、评价治疗效果等领域广泛开展。目前国内外对 IOS 应用于矽肺的研究不多,且结论不一,本文通过对矽肺患者 IOS 结果的研究,探讨 IOS 评价矽肺患者肺功能的临床价值。

收稿日期: 2014-06-23; 修回日期: 2014-08-20

作者简介: 王洁(1976—),男,硕士,主治医师,主要从事职业病临床工作。

1 对象与方法

1.1 对象

选取 2010 年 8 月 ~ 2012 年 12 月不吸烟的矽肺住院病人 63 例作为矽肺组,其中男 56 例、女 7 例,平均年龄(47.68 ± 13.58)岁,所有病例均按《尘肺病诊断标准》(GBZ70-2009)进行诊断分级,其中壹期矽肺 24 例、贰期 21 例、叁期 18 例。同时选择不吸烟的健康志愿者 20 例作为对照组,其中男 18 例、女 2 例,平均年龄(45.69 ± 13.28)岁。两组在身高、年龄、性别、体重上差异无统计学意义。测试前经过医院临床医学伦理委员会批准,并取得受试者的知情同意。

1.2 检查前准备

(1) 所选患者均按《尘肺病诊断标准》(GBZ70—2009) 确诊为尘肺,病情稳定,受试时无明显呼吸困难等症状,排除有支气管哮喘等病史者;(2)排除受试前2周内急性呼吸系统感染史者;(3)受试前48h内停用吸入型糖皮质激素、茶碱类、β受体激动剂、白三烯受体拮抗剂等药物;(4)受试前避免剧烈运动,避免进食咖啡、浓茶等含咖啡因饮料。

1.3 主要仪器和设备

德国 Jaeger 公司 MasterScreen IOS、PFT 肺功能检测系统。

1.4 方法

矽肺患者和健康者在肺功能室休息 $10~\min$ 后,先进行 IOS 检测,再进行 PFT 检测,避免用力呼气造成气道紧张而影响 IOS 测定结果。IOS 检测: 每次测定用时 $30\sim45~\mathrm{s}$,重复 $3~\chi$,每次间隔 $1~\min$,结果取 $3~\chi$ 测定平均值。PFT 检测: 各项参数重复检测 $3~\chi$,每次间隔 $10~\min$,误差 <5%,取最佳曲线。

1.5 测定参数

(1) IOS 参数: 呼吸总阻抗(Z5)、振荡频率为 5 Hz 时的气道阻力(R5),振荡频率为 20 Hz 时的气道 阻力(R20),振荡频率为 5 Hz 和 20 Hz 时气道阻力差值(R5-R20),振荡频率为 5 Hz 时的电抗(X5)、低频电抗面积(AX)、共振频率(Fres)。(2) PFT 参数:用力肺活量占预计值百分比(FVC)、第一秒用力呼气容积占预计值百分比(FEV $_1$)、第一秒用力呼气容积与用力肺活量之比(FEV $_1$ /FVC)。

1.6 统计学处理

采用 SPSS 19.0 软件对结果进行统计分析。矽肺各组和健康对照组间 PFT、IOS 结果比较采用单因素方差分析(One-Way ANOVA); IOS 和 PFT 参数相关性分析采用双变量直线相关分析(pearson 相关系数)。以P < 0.05 为差异有统计学意义。

2 结果

2.1 各期别矽肺组与对照组 PFT 比较

表 1 可见,随着矽肺期别上升,FVC、FEV₁、FEV₁/FVC 呈下降趋势,组间比较差异有统计学意义 (P < 0.05),参期矽肺较其他各组均存在显著差异 (P < 0.05),对照组及壹期、贰期矽肺组间差异无统计学意义。

表 1 矽肺组与对照组 PFT 比较 $(\bar{x} \pm s)$

组别	例数	FVC	FEV_1	FEV_1/FVC
健康对照组	20	98. 19 ± 28. 18	97. 79 ± 16. 71	81. 31 ± 13. 55
壹期矽肺组	24	89. 64 ± 21. 04	82. 65 \pm 19. 85	76. 55 \pm 26. 71
贰期矽肺组	21	86.97 ± 15.56	80. 36 \pm 30. 27	74. 33 \pm 19. 40
叁期矽肺组	18	72.00 ± 21.85	58.77 ± 28.82	67. 74 \pm 24. 80
F 值		4. 087	12. 491	4. 012
P 值		0.014	0.000	0. 016

注: $FVC \setminus FEV_1$ 结果为实测值占预计值百分比; FEV_1/FVC 为实测值比值。

2.2 各期别矽肺组与对照组 IOS 比较

矽肺组与健康对照组比较,Z5、R5-R20、X5、Fres、AX 明显升高,差异有统计学意义(P < 0. 05);进一步两两比较,壹期、贰期矽肺组与健康对照组间差异有统计学意义(P < 0. 05),叁期矽肺较其他各组差异均有统计学意义(P < 0. 05)。见表 2。

表 2 不同期别矽肺组与对照组 IOS 比较 $(\bar{x} \pm s)$

组别	例数	Z5	R5	R20	R5-R20	X5	Fres	AX
健康对照组	20	110. 21 ± 34. 53	108. 57 ± 35. 10	86. 54 ± 26. 04	1. 13 ± 0. 64	-1.18 ±0.57	12. 27 ± 4. 12	7. 49 ± 5. 75
矽肺组								
壹期矽肺组	24	146.63 ± 69.20	157. 31 \pm 52. 08	90. 43 ± 28.87	1.68 ± 1.21	-1.72 ± 1.90	17. 57 \pm 5. 61	12. 12 ± 14. 38
贰期矽肺组	21	150. 68 ± 30.98	153. 28 ± 28.37	94. 73 \pm 21. 46	1. 76 ± 0.38	-1.75 ± 0.48	17. 18 ± 3.20	14.52 ± 3.54
叁期矽肺组	18	205. 68 ± 124. 45	163.55 ± 80.30	98. 47 ± 40. 17	2.51 ± 2.27	-3.81 ± 3.61	23.60 ± 9.06	29. 35 ± 34. 57
F 值		4. 006	2. 727	1. 968	2. 909	4. 030	3. 061	3. 977
P 值		0.018	0.052	0. 131	0.040	0.012	0.037	0.013

注: Z5、R5、R20 单位均为实测值占预计值百分比; R5-R20、X5 单位为 cmH₂O/(L•s); AX 单位为 cmH₂O/L; Fres 单位为 Hz。

2.3 不同程度通气功能阻塞矽肺组与对照组的 IOS 比较

按通气功能阻塞程度将矽肺组分为无阻塞和轻度

阻塞、中度阻塞、重度阻塞 4 组,随阻塞程度上升,各 IOS 参数结果亦呈上升趋势,且各参数组间比较差 异均有统计学意义(*P* < 0.05)。见表 3。

衣3 小川住及週15切能阻塞砂加组与对照组 105 比较(※ ± ;	表 3	不同程度通气功能阻塞矽肺组与对照组 IOS 比较	$(\bar{x} \pm s)$)
---------------------------------------	-----	--------------------------	-------------------	---

组别	例数	Z5	R5	R20	R5-R20	X5	Fres	AX
健康对照组	20	118. 21 ± 34. 53	114. 57 ± 35. 10	96. 54 ± 26. 04	1. 13 ± 0. 64	-1. 24 ± 0. 57	16. 27 ± 4. 12	7. 32 ± 5. 75
矽肺组								
无阻塞	31	114. 42 ± 26.53	100. 94 \pm 24. 45	87. 48 ± 22.74	1. 10 ± 0.35	-1.00 ± 0.50	16.21 ± 4.32	8.67 ± 3.11
轻度阻塞	15	160.83 ± 97.85	$140.\ 21\ \pm72.\ 02$	80. 27 \pm 42. 54	1.79 ± 1.44	-2.06 ± 0.79	20.04 ± 6.43	17. 63 ± 19.96
中度阻塞	10	217.84 ± 81.54	178. 48 ± 56 . 31	114. 60 ± 30.76	2.56 ± 1.04	-4.10 ± 1.17	23.03 ± 5.57	28.96 ± 17.11
重度阻塞	7	302.50 ± 76.60	229. 45 ± 37.06	119. 25 \pm 31. 61	4. 11 ± 1. 68	-6.51 ± 2.54	28.59 ± 9.80	51.35 ± 30.05
F 值		14. 946	11. 352	2. 772	14. 633	15. 399	6. 418	14. 244
P 值		0.000	0.000	0. 046	0.000	0.000	0.000	0.000

2. 4 FEV₁、FEV₁/FVC 与 IOS 相关性比较

由表 4 可见,除 R20 外,其他各 IOS 参数均与 FEV_1 、 FEV_1/FVC 显著相关(P<0.01),其中 X5 为

正相关,其他为负相关,FEV₁/FVC 与 IOS 相关性较FEV₁ 更高。

表 4 矽肺患者 FEV1、FEV1/FVC 与 IOS 相关性

ᄜᅲᆉᆉᆉ	Z	5	R	5	R2	20	R5-l	R20	Х	5	Fr	es	A	X
肺功能指标	r 值	P 值	r 值	P 值	r 值	P 值	r值	P 值	r 值	P 值	r 值	P 值	r 值	P 值
FEV ₁	-0.561	0.001	-0.521	0.002	-0.128	0. 484	-0.510	0.003	0. 507	0.003	- 0. 468	0.007	-0.521	0. 002
FEV ₁ /FVC	-0.616	0.000	-0.572	0.001	-0.154	0.401	-0.621	0.000	0.570	0.001	-0.522	0.002	-0.633	0.000

3 讨论

矽肺可影响肺通气功能,使肺组织纤维化,顺应性降低,引起限制性通气障碍;还可侵犯小气道,使外周气道阻力增高,引起阻塞性通气障碍。其损害类型根据接尘种类不同而有差异,一般来说矽肺以混合性为主,煤工尘肺以阻塞性多见,而石棉肺则以限制性为典型[1~3]。

肺功能检查(PFT)是对尘肺患者病情判断、疗效观察的重要手段,也是目前进行劳动能力鉴定的主要依据。为了排除吸烟的影响,本文选取了不吸烟的矽肺患者和健康对照组进行比较研究。结果发现,随着矽肺期别的上升,反映通气功能的指标 FVC、FEV₁、FEV₁/FVC 呈下降的趋势,但进一步分析组别之间的差别,发现对照组、壹期、贰期矽肺间差别无统计学意义(P > 0.05)。提示,在矽肺早期甚至中期,PFT 指标如 FEV₁、FVC、FEV₁/FVC 等无明显改变,即不能反映早期可能就已存在的异常改变。另外由于 PFT 受患者用力程度的影响,对受检者主观配合程度要求较高,且老年、神经肌肉疾病患者等难以完成等原因,完成高质量的 PFT 检查并不容易。

IOS 是在强迫振荡技术(forced oscillation technique, FOT)基础上发展起来的一种测定呼吸阻抗(Zrs)的新方法,具有操作简便、对受检者配合程度要求低、重复性好、内容丰富等特点。IOS 通过测量呼吸系统因压力改变引起的流速变化,检测 Zrs 及其组成部分呼吸阻力(Rrs)和呼吸电抗(Xrs)。R5代表总气道阻力,R20代表中心气道阻力,R5-R20代表外周气道阻力。X5 指振荡频率为 5 Hz 时的电抗

X,主要反映外周肺组织储存呼吸电容能量的能力,代表外周肺组织弹性阻力,间接提示周边气道阻塞。肺纤维化时肺组织僵硬,肺弹性回缩力下降间接反映肺顺应性的降低;肺气肿时弹性回缩力下降反映肺充气过度和外周气道的阻塞,两种情况都造成 X5 负值加大(绝对值增大)。共振频率(Fres)指弹性阻力与惯性阻力因方向相反而相互抵消时的振荡频率,也是反映气道阻塞的敏感指标。AX 特指总的呼吸电抗X 在 5 Hz 至 Fres 之间所有频率数值的整合及综合,对气道阻力的变化异常敏感^[4]。

对于 FOT、IOS 应用于尘肺病国外已有报道^[5],认为其对发现肺功能损害具有肯定的临床价值,且阻力测定敏感性较常规肺功能高。本研究发现,壹期矽肺患者 IOS 参数 Z5、R5-R20、X5、Fres、AX 与对照组比较,差异存在统计学意义(P < 0.05),即 IOS能发现早期矽肺患者气道阻力的异常;而 PFT 指标未能发现早期矽肺肺功能的异常,说明 IOS 在检测气道阻力方面较 PFT 具有一定的优势。

国外学者将矽肺患者按肺通气功能阻塞程度分组后发现,气道阻力随阻塞程度加重呈上升趋势^[5 f]。与之相似的是,本研究按阻塞程度(根据 FEV₁/FVC和 FEV₁)将矽肺组与对照组比较发现,随阻塞程度加重,各 IOS 参数总体亦呈上升趋势,且各参数组间比较差异均有统计学意义。提示 IOS 与 PFT 尽管原理和反映的意义不同,但在反映气流或气道阻塞方面具有一定的相似性。值得注意的是,R20 在轻度阻塞组较对照组和矽肺无阻塞组并无上升趋势,其原因考虑为 R20 主要反映中心气道阻力,矽肺患者早期的

肺功能损害通常在小气道而非中心气道。

为了进一步说明 IOS 参数与通气功能的关系,将 IOS 各参数与 FEV₁和 FEV₁/FVC 进行相关性分析。曾有学者将支气管哮喘、COPD 患者 PFT 和 IOS 结果进行相关性分析,认为两者存在显著相关^[7 8]。本研究发现,除 R20 外,其他各 IOS 参数均与 FEV₁和 FEV₁/FVC 显著相关(P < 0.01),其中 X5 为正相关,其他为负相关;比较相关性大小,FEV₁/FVC 与 IOS 参数相关性更高。IOS 参数主要反映气道阻力大小,而 FEV₁/FVC 也是判断有无阻塞的指标,两者相关性较高提示它们存在一定的关系。R20 与 FEV₁和 FEV₁/FVC 无明显相关,再次说明矽肺气道阻塞主要存在于周边小气道,而中心气道影响则不明显。

IOS 自 1997 年正式在国内临床应用,至今已经获得长足的发展。大量文献报道证明其在 COPD、支气管哮喘、气道反应性测定等领域有很高的临床应用价值^[9~11]。IOS 的阻力测定有很好的特异性,能区分阻塞发生的部位(中心或周边)^[12]、严重程度以及呼吸动力学特征,因此有利于疾病的早期诊断。对于矽肺来说,PFT 仍是目前劳动能力鉴定的主要依据,而 IOS 则可能是尘肺病肺功能评价的有益补充。

参考文献:

- Reid P A , Reid P T. Occupational lung disease [J]. J R Coll Physicians Edinb , 2013 , 43 (1): 44-48.
- [2] Hoffmeyer F, van Kampen V, Brüning T, et al. Pneumoconiosis

- [J]. Pneumologie, 2007, 61 (12): 774-793.
- [3] 刘秉慈,李玉瑞. 我国尘肺发病机制研究的概况与展望 [J]. 中国工业医学杂志,2007,20(1): 3-5.
- [4] Smith H J , Reinhold P , Goldman M D. Forced oscillation technique and impulse oscillometry [J]. Eur Respir , 2005 , 31: 72-405.
- [5] de Mesquita Júnior J A, Lopes A J, Jansen J M, et al. Using the forced oscillation technique to evaluate respiratory resistance in individuals with silicosis [J]. J Bras Pneumol, 2006, 32 (3): 213-220.
- [6] Sa P M, Faria A D, Ferreira A S, et al. Validation of the forced oscillation technique in the diagnostic of respiratory changes in patients with silicosis [J]. Conf Proc IEEE Eng Med Biol Soc, 2010: 398-401.
- [7] Song T W , Kim K W , Kim E S , et al. Correlation between spirometry and impulse oscillometry in children with asthma [J]. Acta Paediatr , 2008 , 97 (1): 51-54.
- [8] Haruna A, Oga T, Muro S, et al. Relationship between peripheral airway function and patient-reported outcomes in COPD: a cross-sectional study [J]. BMC Pulm Med, 2010, 10: 10.
- [9] Hirsh D K , Ian A M , Ashraf U , et al. Impulse oscillometry in the evaluation of diseases of the airways in children [J]. Ann Allergy Asthma Immunol , 2011 , 106 (3): 191-199.
- [10] Naji N , Keung E , Kane J , et al. Comparison of changes in lung function measured by plethysmography and IOS after bronchoprovocation [J]. Respir Med , 2013 , 107 (4): 503-510.
- [11] Kanda S , Fujimoto K , Komatsu Y , *et al*. Evaluation of respiratory impedance in asthma and COPD by an impulse oscillation system [J]. Intern Med , 2010 , 49 (1): 23-30.
- [12] Hira H , Munjal J , Zachariah S , et al. The site of airway obstruction among patients of emphysema: Role of impulse oscillometry [J]. Lung India , 2008 , 25 (1): 8-13.

(上接第405页)

参考文献:

- [1] Breunig M bauer S, Goepferich A. Polymers and nanoparticles; Inteligent tools for intracellular targeting [J]. European Journal of Pharmaceutics and Biopharmaceutices, 2008, 68 (1): 112–128.
- [2] Han Ying, Xie Guangyun, Sun Zhiwei, et al. Plasma kinetica and biodistribution of water-soluble CdTe quantum dots in mice: a comparison between Cd and Te [J]. Nanopart Res, 2011, 13: 5373-5380.
- [3] 谢广云,郑敏,陈巍,等. 碲化镉量子点对小鼠肝、肾的毒性研究[J]. 毒理学杂志,2012,269(4): 262-265.
- [4] Yan Y X , Mu Y , Feng G D , et al. Novel stategy for synthesis of high quality CdTe nanocrystals in aqueous solution [J]. Chemical Reseach in Chease Universities , 2008 , 24 (1): 24-28.
- [5] 徐海燕,王琛. 纳米生物医学技术 [M]. 中国协和医科大学出版社,2009: 363.
- [6] 殷海荣,唐萌,夏婷,等.量子点(CdTe)诱导小鼠腹腔巨噬细胞凋亡与线粒体膜电位的影响[J].南开大学学报,2008,41(3):5-9.
- [7] Chan W H, Shiao N H, Lu P Z. CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondria-dependent pathways and inhibition of survival signals [J]. Toxicology Letters, 2006, 167: 191-200.

- [8] Choi A O, Cho S J, Desbarats J, et al. Quantum dots-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells [J]. J Nanobiotechnology, 2007, 5: 1.
- [9] 刘娜,赵淑锐,林丹,等. 碲化镉量子点诱导氧自由基产生的检测 [J]. 生态毒理学报,2012,7(1):99-106.
- [10] 谢广云,张杰,肖扬,等. 碲化镉量子点对小鼠肝脏氧化应激及 DNA 损伤效应初探 [J]. 卫生研究,2012,41(1):30-33.
- [11] 谢广云,杜庆成,郑敏,等. 碲化镉量子点对小鼠肝脏的氧化 损伤作用研究 [J]. 卫生研究,2013,42(1): 39-43.
- [12] 谢广云,王全凯,王安娜,等. 碲化镉量子点对 CHL 细胞染色体畸变作用研究[J]. 卫生研究,2013,42(3):415-418.
- [13] Chan W H, Shiao N H, Lu P Z. CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondria-dependent pathways and inhibiton of survival signals [J]. Toxicology Letters, 2006, 167: 191-200.
- [14] Wang Lin , Dattatri K Nagesha , Selvapraba Selvarasah , et al. Toxicity of CdSe nanaparticles in Caco-2 cell cultures [J]. Journal of Nanobio-technology , 2008 , 6 (11): 1-11.
- [15] Zhang Gen , Shi Linxin , Matthias Selke , et al. CdTe quantum dots with daunorubicin induce apoptosis of multidrug-resistant human hepatoma HepG2/ADM cells: in vitro and in vivo evaluation [J]. Nanoscale Research Letters , 2011 , 6 (1): 418-429.